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Conclusion il
Our solution: OpenGAN trains a post-hoc open-set classifier to identify 1) Using features is better than pixels, ref. OpenGANa vs OpenGANPX
the open-set over features extracted from the off-the-shelf K-way network. 2) OpenGAN is better than binary classifiers, ref. OpenGANea ys, CLSfea
The classifier is adversarially trained on real outlier data and fake data. To which is a binary open-vs-closed classifier trained on features. |
generate the fake data, we train a GAN by fooling the open-set classifier. 3) OpenGAN is better than (K+1) classifiers, ref. OpenGAN vs. (K+1) Acknowledgements. This work was supported by the CMU Argo Al Center

That said,|open-set classifier = GAN-discriminator|! 4) discriminative is better than generative, ref. OpenGAN vs. GMM for Autonomous Vehicle Research.




