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Problem formulation. Through the lens of K-way classification, a system 

should flag unknown objects not belonging to the pre-defined K classes, in 

addition to K-way classification. This is crisply formulated as Open-Set 

Recognition.

Acknowledgements. This work was supported by the CMU Argo AI Center

for Autonomous Vehicle Research.

Key insights in OpenGAN

Experiment II: Open-Set Discrimination (toyish but “standard”)

Motivation. Real-world machine learning systems need to analyze novel 

testing data that differs from the training data. Failing to recognize unknown

objects causes serious safety concerns in autonomous vehicles (AVs).

A state-of-the-art semantic segmentation network has not been trained to 

recognize strollers or street-market (mid coln below). It misclassifies them 

as motorcycle and building (right coln below). Such misclassifications can 

be a critical mistake when fed into AVs because these objects require 

different plans for obstacle avoidance.

(a) Use outlier data for training the 

discriminative open-set classifier (aka 

Outlier Exposure). Outlier data enables 

stable training and validation for model 

selection. But outliers can be biased as 

they will not span the open world.

Experiment I: Cross-Dataset Open-Set Recognition

Experiment III: Open-Set Semantic Segmentation

Open-Set Recognition requires 

recognizing examples from the 

pre-defined K classes and 

identifies unknown examples 

that belong to some other 

classes outside the K classes.

Our solution: OpenGAN trains a post-hoc open-set classifier to identify 

the open-set over features extracted from the off-the-shelf K-way network. 

The classifier is adversarially trained on real outlier data and fake data. To 

generate the fake data, we train a GAN by fooling the open-set classifier. 

That said, open-set classifier ≡ GAN-discriminator !

Setup: split a dataset (e.g., MNIST) into a closed-set (e.g., 0-5 digits) and 

an open-set (e.g., 6-9 digits) w.r.t class labels; train only on closed-set but 

test on both closed- and open-set.

Metrics: Area Under ROC Curve and macro-F1 over (K+1) classes

Setup: train a 200-way classification network on TinyImageNet train-set as 

the closed-set and another dataset (e.g., MNIST) as the outlier data, test on 

TinyImageNet test-set and a third dataset (e.g., CIFAR) as the open-set. 

Setup: recognize unknown object pixels in the context of semantic 

segmentation.

Visualization. Recall that the 

open-set classifier is the GAN-

discriminator (a nonlinear MLP). 

It effectively groups closed- and 

open-set data in the off-the-shelf 

feature space. This intuitively 

shows why OpenGAN works.
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Conclusion

1) Using features is better than pixels, ref. OpenGANfea vs OpenGANpix

2) OpenGAN is better than binary classifiers, ref. OpenGANfea vs. CLSfea

which is a binary open-vs-closed classifier trained on features.

3) OpenGAN is better than (K+1) classifiers, ref. OpenGAN vs. (K+1)

4) discriminative is better than generative, ref. OpenGAN vs. GMM

Conclusion holds as in Experiment I. 

Conclusion holds as in Experiment I. Importantly, OpenGAN performs 

significantly better than existing open-set methods. Moreover, unlike 

OpenGAN which is a simple discriminative method, image-reconstruction 

based methods (not shown here) do not work well because of the 

difficulties in reconstructing high-resolution images. 

Visualization. Second coln: white pixels are the “ground-truth” open-set 

pixels. Last coln: thresholding the open-set likelihood map of OpenGAN. 

OpenGANpix(b) Use fake data to augment the 

outlier data. To generate fake data, 

we train a GAN by fooling the open-

set classifier.  In this sense, the 

GAN-discriminator is the open-set 

classifier.

OpenGANfea

(c) Using off-the-shelf features 

to train the open-set classifier, 

rather than pixels. We find it 

much more effective to use 

features for open-set 

recognition than pixels. This 

leads to simply training a post-

hoc lightweight model.


